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The Importance of Quantum Effects in
Superconducting Cosmic Strings

Patrick Peter1
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Classical current-carrying cosmic string loop motion is investigated by means of
a numerical simulation making explicit use of the Carter formalism and the
Carter±Peter rational and logarithmic equations of state. The class of initial
configurations consists of elliptic loops far from the vorton equilibrium state with
constant state parameter along the loop. Thus, the relevant parameters, apart from
those describing the equation of state itself, are the ellipticity and the initial state
parameter. It is found that for most of the parameter space, the loop motion is
quasiperiodic, but that this result is actually irrelevant to the treatment of an
arbitrary loop motion: indeed, almost systematically, the loops develop kinks and
cusps, and in the case of spacelike currents, there are segments of the loop that
escape the elastic regime. It is then argued that quantum effects resulting from
these situations will in practice provide the dominant evolution mechanisms.

1. INTRODUCTION

Cosmic strings [2, 3 ] have been proposed as a possible means of forming
large-scale structures in the universe, yielding at the same time an imprint in

the cosmic microwave background (CMB). Their distribution was computed

numerically [4] and it was shown that it consists of mainly (roughly 80%)

a scale-invariant distribution of loops together with ª long strings,º i.e., loops

whose characteristic size exceed that of the observable universe. These results

were derived using the simplest field model that leads to the existence of
cosmic strings, namely the Abelian Higgs model. As a result, the strings are

structureless, so that the only nonvanishing components of their stress-energy

tensors, the energy per unit length U and tension T, are equal and constant.

Once approximated as a two-dimensional worldsheet, the string dynamics is
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then simply derivable from the Goto±Nambu action [5 ], i.e., the area spanned

by the string.

In 1985, Witten [6 ] made the point that when one considers a realistic
field model, the Higgs field is very often coupled to other fields, in particular

fermions and gauge fields, to which it gives masses (as was the original aim

of the Higgs mechanism). He realized that these couplings might imply the

possibility that some particles get trapped in the string cores, thereby poten-

tially supporting currents. In the special case where the current was coupled

to electromagnetism, he showed that its intensity was proportional to the
time integral of an applied external electric field. In other words, the string

behaves as a superconducting wire (with some differences, however, as the

extreme thinness of these strings prevents the Meissner effect, for instance,

from taking place); Witten called them superconducting cosmic strings. It is

now believed that most of the particle physics models having strings predict

them to be superconducting.
Meanwhile, a formalism aiming at a description of a p-dimensional

object living in an n-dimensional manifold was set up by B. Carter, making

use of the equation of state relating the energy per unit length and the tension

[7, 8 ]. In this formalism, one needs an extra parameter, called the state
parameter, and interpretable as the square of the phase gradient of an effective
scalar field defined on the string itself. Therefore, this formalism provides a

tool to examine the dynamics in particular of a superconducting cosmic string,

which, contrary to the Goto±Nambu string, is endowed with a rich structure.

For instance, the amplitude of the current, that may vary along the string,

can be chosen as the state parameter.

The actual microscopic structure of these strings was then elucidated in
a series of works [9±12] until an equation of state was derived analytically

[13], based on their known properties, such as, in particular, the current

saturation (or quenching [14 ]) and the phase frequency threshold [10]

(implying a divergence of the charge per unit length when the state parameter

approaches the mass of the trapped particle). This was derived for a bosonic

condensate and used extensively afterward under the assumption, emphasized
by Witten, that the string worldsheet being two-dimensional, even a fermionic

current was essentially describable by means of a scalar field. Work is cur-

rently in progress to calculate the effective equation of state for a four-

dimensional microscopic string model having fermionic carriers [15].

Solutions describing the motion of a Goto±Nambu string were obtained

[16] and it was shown that most initial conditions yield the existence of
transient phenomena occurring along the string, called kinks and cusps, i.e.,

regions of the string where the curvature can become sufficiently high that

quantum effects are expected to be dominant. As is shown here, this can be

generalized to the superconducting case, with a difference as far as the
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conclusions are concerned: a Goto±Nambu loop is doomed to decay into a

bunch of Higgs and gauge vector boson radiation, so taking account of the

presence of kinks and cusps does not really modify the status of a string
network for which the disappearance of loops is already taken into account.

Superconducting strings, on the other hand, have a nondegenerate equation

of state, i.e., the energy per unit length is different from the tension. Thus,

the Lorentz invariance along the string that exists in the Goto±Nambu case

is violated by the very existence of the current. As a result, a loop can be

assigned a physically measurable angular momentum; in other words, the
tension that tends to make the loop shrink can be balanced by the centrifugal

force due to rotation in such a way as to yield a new equilibrium configuration,

called a vorton [17 ].

The question of whether vortons form and if so if they are stable is

of uttermost importance since it was evaluated that they would lead to a

cosmological catastrophe [18 ]: indeed, as the remnant density of loops would
scale as matter (Goto±Nambu loops, because they decay quite rapidly, yield

an energy density in the universe that ultimately scales like radiation), very

massive vortons would easily dominate the evolution of the universe. In fact,

considering cosmic strings formed at the grand unified (GUT) phase transition

reproduces essentially the monopole problem.
Until now, the problem has been studied at two different levels, namely

that of the classical stability of vortons, which has been examined in general

[19, 20] and established in the particular case of Witten superconducting

loops [21 ], and the approach to equilibrium [8, 22]. The latter was investigated

by considering an already circular loop, for which it was shown that it

evolves in a self-potential depending only on its radius and on the initial
state parameter. Quantum stability has been briefly looked at [23 ], and this

subject was essentially neglected; it will be soon clarified with the emergence

of new quantum calculations [15].

All this leaves one stage to progress further: starting with an arbitrary

shaped loop, one needs decide if a vorton might form. This is the point we

intend to treat here by means of the classical equations of motion in the thin-
string limit, making use of the Carter±Peter equation of state. The next section

recaps the relevant formalism and exhibits the two-dimensional equations of

motion (we have assumed the loop to remain in a plane to begin with). Then

we go on to the actual numerical simulation: as the equations are highly

nonlinear, no analytic solution could be found except the circular equilibrium

ones. Those are used as a means of checking the numerics.
We have decided to study a class of solutions that consist of initial

configurations having elliptic shape with arbitrary (and constant) state param-

eter. Therefore, we have a two-dimensional parameter space to analyze,

once the ellipticity is taken into account. What was found, contrary to our
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expectations, is that not only do kinks and cusps very often develop, but also

some regions of the loops show a tendency to move out of the elastic regime

where the thin-string formalism is valid. In both cases, quantum effects will
become dominant. Further work is needed to incorporate these effects into

the simulations.

2. GENERAL EQUATIONS OF MOTION

A superconducting cosmic string can be microscopically described
through the condensation of a complex scalar field S (x m ) whose phase may

vary along the string worldsheet. Explicitly, this can be examplified by

considering locally a piece of string as an infinite straight string lying an

axis z, giving the ansatz, using cylindrical coordinates,

o (x m ) 5 s (r) exp [i( v t 2 kz) ] (1)

so that the state parameter is

w 5 k2 2 v 2 (2)

whose sign therefore reflects the timelike (w , 0) or spacelike (w . 0)

character of the corresponding current [10].
When one considers an arbitrary shape, one needs two internal string

coordinates j a, with the identification j 0 [ t 5 t and j 1 [ , 5 z no

longer automatically feasible (although choosing the proper time along the

worldsheet to be the coordinate time is always possible and amounts just to

a gauge choice). The string location is then the set {x a ( j a)} thanks to which

an internal metric g ab can be defined

g ab 5 g m n
- x m

- j a

- x n

- j b (3)

with inverse g ab. In these general conditions, the state parameter reads

w [ k 0 g ab - a c - b c (4)

where now the scalar condensate reads

o (x m ) 5 s (x ’ ) exp [i c ( j a) ] (5)

The set {x ’ } represents the coordinates orthogonal to the string worldsheet.

The coefficient k 0 is a normalization factor.
Carter’ s formalism states that the knowledge of a Lagrangian function

+(w) is enough to entirely determine the string dynamics, provided it is not

coupled to an external long-range field such as electromagnetism, using

the action
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S 5 # d 2 j ! 2 g + (w) (6)

where g is the determinant of the induced metric g ab. Varying this action

with respect to the variables x a ( j a) yields the stress-energy tensor conservation

h r
m ¹ r TÅ m n 5 0 (7)

the latter being defined as usual through

TÃm n [
2

! 2 g

d S

d g m n
(8)

and

! 2 gTÃm n 5 # d 2 j ! 2 g TÅ m n d (4) [x r 2 x r ( j a) ] (9)

and the first fundamental tensor of the string worldsheet being

h m n 5 g ab - x m

- j a

- x n

- j b (1 0)

As it turns out, the stress-energy tensor may be cast in the form

TÅ m n 5 U(w) u m u n 2 T(w) v m v n (11)

where u m and v m are respectively a timelike and spacelike unit vector tangent

to the wordlsheet. The energy per unit length U and the tension T can
both be calculated knowing only the Lagrangian function + (see ref. 8 for

details): defining

_ [ 1 2 2
d+

dw 2
2 1

(12)

and

x 5 w_ 2 2 (13)

( x being interpretable as the current flowing along the string), one can obtain

another formulation in terms of a master function L ( x ) related to the Lagran-

gian function by means of the Legendre transformation

L 5 + 1 _ x (14)

This is another formulation of the same physics, as it can be shown [8 ] that

varying the action * d 2 j ! 2 g L ( x ) with respect to x a ( j a) yields the same

dynamics as varying the action (6). For w . 0, i.e., for a spacelike current,

the energy per unit length turns out to be identifiable with the Lagrangian
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(U 5 2 +) and the tension with the master function (T 5 2 L ), while for w
, 0, i.e., a timelike current, the inverse relations U 5 2 L and T 5 2 + hold.

We restricted our attention to a two-dimensional situation where a string
loop lies on a (x, y) plane and we fixed the gauge to be that for which the proper

time t is identified with the coordinate time t, while the space coordinate ,
is the (conveniently rescalled) phase of the bosonic condensate c . Thus, the

interesting set of unknown functions to be dynamically determined is

x a ( j a) [ [t, x (t, c ), y(t, c ) ] (15)

Setting

b 5 xÇ x8 1 yÇ y8 (16)

D 5 xÇ y8 2 yÇ x8 (17)

n2 5 x82 1 y82 2 D 2 (18)

zÇ 2 5 1 2 xÇ 2 2 yÇ 2 (19)

one finds the state parameter as

w 5 6 zÇ 2/n2 (2 0)

where the sign must be chosen according to whether the current is required
to be timelike or spacelike. Dots and primes respectively denote derivatives

with respect to t and c . Using these notations, we find the equations of motion

xÈ 5
Ax8 1 B ( y8 2 xÇ D )

y8( y8 2 xÇ D ) 1 x8(x8 1 yÇ D )
(21)

and

yÈ 5
Ay8 2 B (x8 1 yÇ D )

y8( y8 2 xÇ D ) 1 x8(x8 1 yÇ D )
(22)

where

A 5
zÇ 2c2

L

n2 2 b 2c2
L

[zÇ 2(c1x9 1 c2 y9) 1 2 b (c1xÇ 8 1 c2yÇ 8) ] (23)

B 5
zÇ 2c 2

T

n2 2 b 2c2
T

[zÇ 2( y8x9 1 x8 y9) 1 2 b ( y8xÇ 8 2 x8 yÇ 8) ] (24)

c1 5 x8 1 yÇ D (25)

c2 5 y8 2 xÇ D (26)

and the transverse and longitudinal velocities are defined as
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c2
T 5

T

U
(27)

and

c2
L 5 2

dT

dU
(28)

Solving these equations is the purpose of the following section, but for now,

let us turn to the equation of state.

3. EQUATION OF STATE

The microscopic structure of a superconducting cosmic string involves

two mass scales, namely m, the energy scale of the symmetry breaking

responsible for the very existence of the cosmic strings themselves, and m*,

essentially the mass of the trapped particles. Detailed examination of the
field equations [9, 10] revealed that two phenomena take place: first, the

amplitude of a spacelike current happens to be limited (current quenching).

This nonlinear effect is interpretable in the fermionic case by saying that a

particle momentum cannot exceed its Fermi level, so that any attempt to add

extra particles yields unstable states. On the other hand, for timelike currents,

the energy of the bound particles must be less than their mass, otherwise
they become free particles; this implies a divergence in the current which

was evaluated as a single pole in the function _ 2 1.

Taking the pole into account is easily done by considering a logarithmic

model with

+(w) 5 2 m2 2
m 2

*

2
ln H 1 1

w

m2
* J (29)

and the only relevant dimensionless parameter is

a [ 1 m

m* 2
2

(3 0)

Once every quantity has been rescalled in terms of m, the numerical calcula-
tions can be performed using a as unique underlying parameter. This Lagran-

gian reproduces the numerically derived equation of state for a field model

in the electric regime very accurately. However, the fit is not so good in the

magnetic regime, and it was found that a much better accuracy was obtained

by the so-called rational model with Lagrangian function given by
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+(w) 5 2 m2 1
w

2 H 1 2
w

m2
* J 2 1 (31)

This model was therefore used in the case where w was set to positive values.

A sketch of the equation of state for a specific bosonic carrier supercon-
ducting string model is shown in Fig. 1.

4. NUMERICAL RESULTS

We have run a simulation to solve Eqs. (21) and (22) for the class of

initial conditions consisting of elliptic loops with constant state parameter

allowed to vary in all its available range defined by the conditions c2
L . 0

and c2
T . 0. Figure 2 shows a typical configuration in the (x, y) plane together

with the velocities (the value of the state parameter fixes them unambigu-

ously). Circular loops with vanishing ellipticity e 5 0 have been used as a

numerical check of the stability of the code: as they should evolve in a self-

potential depending only on their radius, the comparison can be achieved

quite easily. Besides, for a rotation velocity equal to cT , we know that one
must have a vorton state, i.e., an equilibrium configuration. This also can be

used as a means of checking the accuracy of the code.

The precision was estimated using the total energy of the loop

Fig. 1. Typical equation of state for the Witten bosonic model. The energy per unit length U and

tension T are shown as functions of the square root of the state parameter n 5 Sign(w) ) w ) 1/2. The

saturation of the current appears on the r.h.s of the plot, while the charge divergence is seen

on the l.h.s. Also shown is the inclusion of electromagnetic corrections in the equation of state

when the carrier is considered coupled to an external electromagnetic field. Those corrections

are seen to be mostly negligible in the range of interest.
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Fig. 2. Initial configuration for a magnetic elliptic loop with semimajor axis a 5 10 (in units

of m 2 1). Parameters are m* 5 m and n 0 5 3/4 m*. The dotted line is for points where x2 ,
c2

L, and the full line for the opposite. (a) The coordinates x and y of the initial string worldsheet;

(b) the velocities as measured by x and y.

E 5 # d c U ( c )
n2 2 b 2c2

T

nzÇ 2
(32)

which should be conserved since the loop is isolated and not coupled to any
radiation field. We imposed a precision of ) D E/E ) , 102 6 over an integration

time T , 1000m 2 1; most of the interesting effects take place long before

this time is reached.

4.1. The Magnetic Regime

A typical elliptic loop evolution is shown for a succession of times in

Fig. 3. Over the range of parameter studied, this is a generic situation: the

elliptic loop starts rotating until it gets deformed in shape while slightly
shrinking. Almost independently of the initial parameters used in the simula-

tion, it reaches a point where an even number of regions become unstable

with respect to longitudinal perturbations, i.e., the current enters a stage

where it should have quenched already. In other words, the string is oversatur-

ated. This means in practice that it has left the elastic regime for which the

thin-string description is valid. A more appropriate field treatment, i.e., not
neglecting the thickness of the torus, should be used. Such a simulation is

beyond the reach of the present work, but can presumably be taken differently

into account. I shall turn to that point in the conclusions.

4.2. The Electric Regime

The typical evolution of an elliptic loop in the electric regime is shown

in Fig. 4; it also occurs in some cases for the magnetic regime. In this case,
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Fig. 3. Evolution of a magnetic string elliptic loop with semimajor axis a 5 10. Both lengths

and time are in units of m 2 1. The parameters have been fixed to those of Fig. 2. Here the

dotted line shows the point along the string where x2 , c2
L, the full line means the opposite,

and a dashed line represents points for which c2
L , 0 (see t 5 17) and where, therefore,

longitudinal instabilities followed by massive quantum radiation are expected to occur. As a

result, all the simulation for times t , 17 are presumably not physical. Essentially similar

results hold for electric strings, leading, however, in this case to the appearance of points where

c2
T , 0.

the loop remains everywhere in the elastic regime so that the thin-string

approximation could seem to be valid all along. However, this is not the

case, as some regions get tiny curvature radius or even should reconnect, a
fact that is not accounted for in the code. More work is needed in the last

case to assess whether this latter possibility is not just an artifact of working

in two dimensions; however, that would not modify the former. Hence the

conclusion in that case would be that, here again, a full field simulation

should be done as the curvature radius may be as small as the actual thickness

of the string.

5. CONCLUSIONS

A-two dimensional simulation of the evolution of superconducting cos-

mic string loops has been presented using the Carter formalism and both the

rational and logarithmic equations of state describing respectively spacelike
and timelike currents. Nonperturbative effects have been taken into account

by considering initial configurations far from the equilibrium vorton state.

Two questions were at the origin of this work, namely that of vorton formation,

i.e., Given an arbitrary shaped loop, what is the probability that it ends up
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Fig. 4. Evolution of a magnetic or electric string elliptic loop with semimajor axis a 5 10 in

a characteristic situation where the loop always remains everywhere in the elastic regime. Both

lengths and time are in units of m
2 1 and the configuration shown here is electric. The parameters

have been fixed to those of Fig. 2 except that n 0 5 1.75m*. The initial configuration actually

looks completely similar to Fig. 2. Conventions are those of Fig. 3. It is seen here that even

though the loop always remains in the elastic regime, regions of very high curvature radius

(particularly in t 5 13.5) form that will be responsible for massive radiation.

in a vorton state? and also, What is the fate of unstable perturbations? These

two questions yield another quest that should now be tackled.

The typical evolution of a loop reveals that it will either exit the elastic

regime, or it will bend so much on itself that its curvature radius might
locally become less than its thickness. In both cases, the thin-string approxima-

tion ceases to be valid, although for different reasons. In practice, that means

that quantum effects will be dominant in these regions so that the simulation,

once these regions have been formed, is presumably physically unreliable. We

do not believe this to be an artifact of the restricted two-dimensional analysis.

Whenever quantum effects start to dominate, we can guess what the

actual mechanisms will be, and they will consist in ejection of trapped

particles outside the string core. In the magnetic regime, this effect will tend

to reduce the amplitude of the current, and thus help the string to get back

to the elastic regime. For the electric case, on the contrary, the state parameter

will be reduced (this is, by the way, another illustration of the dual formalism)

so that, as can be seen in Fig. 1, that will increase the tension. Therefore,

the string will be less bent. Here again, the thin-string approximation might

be recovered. So the problem now reduces to that of obtaining an effective

action that would take the carrier radiation into account. At the time of
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writing, there is no such formalism available, although it is currently

under construction.
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